Saturday, 30 December 2017

How does the procedure work?

X-rays are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording an image on photographic film or a special detector.
Different parts of the body absorb the x-rays in varying degrees. Dense bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays to pass through them. As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air appears black.
Until recently, x-ray images were maintained on large film sheets (much like a large photographic negative). Today, most images are digital files that are stored electronically. These stored images are easily accessible and are frequently compared to current x-ray images for diagnosis and disease management.
Fluoroscopy uses a continuous or pulsed x-ray beam to create a sequence of images that are projected onto a fluorescent screen, or television-like monitor. When used with a contrast material, which clearly defines the area being examined by making it appear dark (or by electronically reversing the image contrast to white), this special x-ray technique makes it possible for the physician to view joints or internal organs in motion. Still images or movies are also captured and stored electronically on a computer.
Unlike conventional x-ray examinations and computed tomography (CT) scans, MRI does not utilize ionizing radiation. Instead, radiofrequency pulses re-align hydrogen atoms that naturally exist within the body while you are in the scanner without causing any chemical changes in the tissues. As the hydrogen atoms return to their usual alignment, they emit different amounts of energy that vary according to the type of body tissue from which they come. The MR scanner captures this energy and creates a picture of the tissues scanned based on this information.
The magnetic field is produced by passing an electric current through wire coils in most MRI units. Other coils, located in the machine and in some cases, placed around the part of the body being imaged, send and receive radio waves, producing signals that are detected by the coils. The electric current does not come in contact with the patient.
A computer then processes the signals and generates a series of images, each of which shows a thin slice of the body. The images can then be studied from different angles by the interpreting radiologist.
Frequently, the differentiation of abnormal (diseased) tissue from normal tissues is better with MRI than with other imaging modalities such as x-ray, CT and ultrasound.

How is the procedure performed?

This examination is usually done on an outpatient basis.
The patient is positioned on the examination table. X-rays of the joint may be taken prior to the procedure to help in guiding the injection and also to provide a baseline exam to be compared later with the arthrogram images. If recent x-rays are available, the physician may choose to use these for reference.
Next, the skin around the joint is cleansed with antiseptic and is often covered with a sterile surgical drape. Using a small needle, the physician injects local anesthetic into the area.
After the local anesthetic has taken effect, a longer needle is then inserted into the joint. The radiologist, a physician specially trained to supervise and interpret radiology examinations, will often use fluoroscopy or ultrasound to guide the needle into the correct position. The physician will sometimes use a syringe to drain (or aspirate) the joint fluid, which may be sent to a laboratory for analysis. Aspiration is typically performed when an infection is suspected.
The contrast material and sometimes air are injected into the joint space while the radiologist observes with fluoroscopy or ultrasound. In some cases, additional medications, such as anti-inflammatory steroids, may be injected into the joint along with the contrast material. After the needle is removed, the patient will be asked to move the affected joint to distribute the contrast material throughout the space. The radiologist may move the joint while evaluating the joint motion under fluoroscopy.
A conventional direct arthrography exam is usually completed within 30 minutes. Exams involving MRI may take more than one hour.

No comments:

Post a Comment